Polynomial identities for matrices over the Grassmann algebra

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the graded identities of the Grassmann algebra∗

We survey the results concerning the graded identities of the infinite dimensional Grassmann algebra. 2010 MSC: 16R10, 16P90, 16S10, 16W50

متن کامل

The G-graded Identities of the Grassmann Algebra

Let G be a finite abelian group with identity element 1G and L = ⊕ g∈G L g be an infinite dimensional G-homogeneous vector space over a field of characteristic 0. Let E = E(L) be the Grassmann algebra generated by L. It follows that E is a G-graded algebra. Let |G| be odd, then we prove that in order to describe any ideal of G-graded identities of E it is sufficient to deal with G′-grading, whe...

متن کامل

Central polynomials for matrix algebras over the Grassmann algebra

In this work, we describe a method to construct central polynomials for F -algebras where F is a field of characteristic zero. The main application deals with the T -prime algebras Mn(E), where E is the infinitedimensional Grassmann algebra over F , which play a fundamental role in the theory of PI-algebras. The method is based on the explicit decomposition of the group algebra FSn. AMS Classif...

متن کامل

A-identities for the Grassmann Algebra: the Conjecture of Henke and Regev

Let K be an algebraically closed field of characteristic 0, and let E be the infinite dimensional Grassmann (or exterior) algebra over K. Denote by Pn the vector space of the multilinear polynomials of degree n in x1, . . . , xn in the free associative algebra K(X). The symmetric group Sn acts on the left-hand side on Pn, thus turning it into an Sn-module. This fact, although simple, plays an i...

متن کامل

Invariants and polynomial identities for higher rank matrices

We exhibit explicit expressions, in terms of components, of discriminants, determinants, characteristic polynomials and polynomial identities for matrices of higher rank. We define permutation tensors and in term of them we construct discriminants and the determinant as the discriminant of order d, where d is the dimension of the matrix. The characteristic polynomials and the Cayley–Hamilton th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2017

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-017-1533-8